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Abstract

The flight trajectory of aerospace vehicles subject to a class of path constraints is

considered. The constrained dynamics is shown to be a natural two-time-scale system.

Asymptotic analytical solutions are obtained. Problems of trajectory optimization and

guidance can be dramatically simplified with these solutions. Applications in trajectory

design for an aerospace plane strongly support the theoretical development.
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1. Introduction --"

In many flight control and trajectory optimization problems, certain portions of the i'---

trajectory are required to follow some state space constraints dictated by operational or

safety considerations. Nowadays almost all realistic atmospheric flight problems are numer-

ically intensive. Solutions to these constrained problems are thus in the form of numerical

data. Analytic expressions of the constrained trajectory as explicit functions of time, if

available, are the dream of a trajectory designer. They provide an efficient means to eval-

uate the trajectory, and often lead to a better understanding of the trajectory. In turn,

tasks such as trajectory optimization, control and guidance can be significantly simplified.

In some cases approximate analytical solutions may be possible because of the additional

relationships due to the constraints. Gilbert et al present an enlightening treatment of

a coasting arc observed in the optimal trajectory of a ground-based interceptor 1. But in

general, no systematic approach exists to obtain analytical solutions to the constrained

system which is often nonlinear in nature. This paper extends the approach in Ref. 1
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to more general flight problems. For an important class of constrained flight problems

which are described in Section 2.1, the dynamics is shown to be a two-time-scale system.

Approximate analytical asymptotic solutions are obtained. Successful applications in the

optimal ascent and hypersonic cruising trajectory analyses for an aerospace plane are pre-

sented. Comparison of the approximate solutions with numerically generated solutions

shows excellent agreement.

2. Theoretical Development

2.1 Problem Formulation

Consider the point-mass model for a vehicle flying in a fixed great circle plane over a

nonrotating spherical earth. Define the dimensionless variables

r - ro V t - to
r= (1)

ro v oTo' vZCo/9o

_where r is the distance from the center of the earth to the vehicle; V the speed; t the

.,Icurrent time. ro and go are the radius and gravitational acceleration, respectively, at the

starting time to. The dynamics is given by

sin7

h' = v sin 7

v cos 7
8 t --

l+h

T-D
V t --

mgo (1 + h) 2

, L v 1

7 - mgov + (l+h v(l+h)2)c°s7

The prime in Eqs. (2)-(5) denotes the differentiation with respect to r.

constraint is imposed on the trajectory

(2)

(3)

(4)

(5)

An algebraic

c(v,a(h))=o

In the above equations 7 stands for the flight path angle,/9 the down range polar angle, T

the thrustl L and D the aerodynamic lift and drag, respectively, p in Eq. (6) represents

the atmospheric density.
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Assumptions:

(i) The dependence of the magnitude of the thrust T on altitude, if any, is exclusively

through atmospheric density or dynamic pressure.

(ii) The atmospheric density is an exponential function of altitude

(7)

where fl = ro/hs with ho being the scale height.

(iii) The constraint contains p explicitly, i.e., OC/Op _ O. At the starting point

C(v(to), po) = O. OC/Ov _ 0 for t _> to. Then by the implicit function theorem v can be

regarded as a function of p

v (8)

(iv) The set of feasible controls is not empty. We define here a pair of controls

[T(t),a(t)] to be feasible if the solutions of Eqs. (2)-(5) satisfy Eq. (6), and 0 <_ T(t) <

Tma, and arnin _ a(t) < a,_ax, where Tma, is the maximum available thrust (which may

be altitude dependent), and ami,_ and amax are the lower and upper bound of angle of

attack, respectively.

(v) I'll is small along all feasible trajectories.

Assumption (i) is valid for many flight scenarios and both airbreathing and rocket

propulsion systems. Note that (i) includes pure coasting case when T = 0. Assumptions

(ii) is easily justified. Assumption (iii) specifies the class of constraints under consideration.

Many important physical constraints in hypersoni c flight are in this class. Assumption (v)

is often satisfied during constrained flight.

2.2 Asymptotic Solutions

In the following analysis, we assume that the vehicle is flying along a feasible trajectory.

We proceed by first differentiating (8) once

v' Of OPh'
- Op Oh = -_f_pvsin-y (9)

By (4) and (9),

T - D sinai (10)
-Sf_fiv sin 7 = rngo (1 -4-h) 2
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There are two controls for the vehicle, T and a. Either one of the controls can be pre-

programmed or determined by some type of performance optimization. The other control

is then determined from Eq. (10) to satisfy the constraint, provided that the resulting

control pair is in the set of feasible controls defined by Assumption (iv). It is understood

that the following discussions apply to such a case. Once T and a are determined, we can

define the lift-to-drag ratio

and the thrust-to-drag ratio

L

r/=_ (11)

T

= _ (12)

is primarily a function of Mach number for given a, and _ a function of Mach number

and atmospheric density for given throttle setting. Next, neglect the gravity component

in the v _ equation for small 7

v' = _T-D = (_-I)D (13)
mgo mgo

Consider the flight path angle equation (5). We note that typically h << 1 for atmospheric

flight, and 7 is assumed to be small. Using cos7 _ 1, 1 + h _ 1 and L = r/D in (5), we

h ave

, = 1( rI__D_D_ 1 + v 2) (14)
v mgo

Assume that n # 1. Replacing D in (14) by (13) yields

7, = 1( ._v_r] 1 1 +v 2) (15)

Noticing v = f(fi), we substitute v' in (15) by Eq. (9) to obtain

7'-" ( Zf'afir/7-
I

--Z=T- 7 + f)

To explore the solution, we define new scaled variables

(16)

(17)
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From Eqs. (2) and (16) the equations for the two new variables are

t .-. V'_

, y_fi__ 1
¢#' = t-_=-i-1 "r- 7 + f)

(18)

(19)

where ¢ = lift - h,/ro. For the earth, e is on the order of 10 -3. By Assumption (i) t¢ is

a function of/t through the density. The right hand side of Eq. (19) is independent of c.

Therefore, we see that equations (18)-(19) constitute a natural two-time-scale system. By

the standard singular perturbation theory 2, the sufficient condition that f_rl/(t¢ - 1) > 0

guarantees that the system has an attracting asymptotic solution to which the solution of

the system will quickly converge. The zeroth-order outer solution is obtained by setting

the right hand of Eq. (19) equal to zero

,_= eh(f- f-l) (_ - 1) (20)
5

where _ = e -_ has been used. Substituting (20) and v = f into (18) gives

d/_ 1 - f2
- P-- (21)

dr /_f_

where

Noticing that df = -_fod[t, we have

t¢-I
P - (22)

77

df = Pdr (23)
1 - f2

which, upon integration, yields

e2:(r) + Q (24)
v=f= e2ZO. )_Q

In (24) Q and z(r) are defined by

vo - 1
0 = _ (25)

vo+l

z(T) = P(o)do (26)



Discussion_

(1) Equation (20) provides an approximate closed-form solution for 7 along the con-

strained trajectory. This formula can be very useful for guidance purposes. The accuracy

is to the degree of sin 3' _ 7 and 1 + h _ 1. Notice that f and f_ can be evaluated from C

[Eq. (6)] via the implicit function theorem.

(2) The solution (20) is the zeroth-order outer solution. In general, the initial condition

on 7 will not be satisfied. In dimensionless time v, this solution will only be accurate

outside the initial boundary layer of thickness on the order of e, which corresponds to a

few seconds in real time.

(3) When T = D (or t¢ = 1) at some isolated points, a singularity arises at those points.

Formulas (20) and (24) then represent the outer solutions in the intervals separated by

those points. There is a small neigborhood around each of those points where the the outer

solutions are inaccurate. When T _-- D, it can be shown from Eqs. (2) and (4) that

1
h= -1

V(,-,2 - vo:)/2+ 1

If we substitute above equation into Eq (6), Eq. (6) becomes an alge_ equation in v.

It is clear that the constrained trajectory can only have a constant speed which is a root of

Eq. (6). This in turn implies that the altitude can only be constant. Thus 7 - 0. Letting

- 1 and z(r) = 0 in Eqs. (20), (21) and (24), we arrive at 7 ----0, h _= h0 = 0 and v - v0,

which verifies that the above formulas are still valid in this case.

(4) Interestingly, the _,-ariation in v is not explicitly dependent on the form of the

constraint (6) according to Eq. (24). A similar formula is obtained in Ref. 1 for a specific

constraint. But here we show that this is a general result for the class of constraints

under consideration. Another nice feature of the above formulas is that there is no explicit

dependence on the mass m which is time-varying for T # 0. The only inconvenience in

the explicit formulas (24) is the function z(r). In some case z may take a simple form as

an example will demonstrate later. For more general situations often an estimate of the

average value of P, say, 15, may be used in (26). Then,

Z(T) "_ PT (27)



If necessary,15 can always be estimated without much difficulty from numerical simulation

of the accurate trajectory. The errors introduced by this approximation are limited because

any errors in h and 7 are about one thousand times smaller than those in h and _, owing

to the scaling effect of Eq. (17). In the post-run data analysis, having to estimate t3 in

the analytic representations is much better than to sort through the numerical data. With

this simplification the explicit solution for 0 is found to be

e2P," _ Q

O',_v_O-Oo=Pln( _---Q )-r
(28)

(5) Up to this point, the discussion is general in the sense that no specific forms of

C in Eq. (6) have been assumed, as long as Assumption (iii) is valid, h is an implicit

function of time through (6) and (24). If, however, h can be solved explicitly in terms of

v from Eq. (6), then h can be expressed as a function of time. _ can thus be obtained as

an explicit function of time through (20).

Let us consider two types of constraints that will be used in the next section.

Case 1

C = v_ p - Cp = O, Cp > 0 and p any nonzero real number (29)

Hence

v = I = cpp-, = cp_,h, i, = _1ln(y/C,)
p

The solutions for h and 5' are

(3O)

e2z(r)

_,(r) = 1 ln( + Q ) (31)
p c_(,_z(_)-O)

e2z(r) __,(,-)= P((_,(,.) ¥ )_- 11

Case 2

C is a function of v and p, and v can be expressed as

(32)

v= f =(A + B_m)" (33)



where A, B, m and n are all nonzero real numbers such that f(e -f') > 0. Case 1 can

actually be included in (33) if we allow A to be zero. Nevertheless, we list the formulas

here seperately for the convenience of later reference.

P" (d_O ") + O)'/" - A(d4") - Q)_/" z_
= _ Q)I/. - g(,) (34)

_(r) = p(A + Bg(r))" -(A + Bg(r))-" (35)
nmB(A + Bg(r))"-lg(r)

1
h(_-) = -i Ing(r) (36)

rn

We conclude this section by stressing that the point at to (r = 0) does not have to be

the point where the trajectory just enters the constraint (6). It can be a midway point on

the constraint. By letting r have negative values, the expressions for v(r), 7(r), h(,) and

0(r) are valid for the portion of the trajectory before to. This feature can be very useful

in characterizing a family of constrained trajectories which enter the same constraint at

different points.

3. Applications in Trajectory Analysis for an Aerospace Plane

3.1 Optimal Ascent to Orbit

An aerospace plane is a hypersonic vehicle that has single-stage-to-orbit (SSTO) ca-

pability. The primary propulsion comes from airbreathing engines. There has been active

study of the fuel-optimal ascent trajectory for the aerospace plane 3-6. It is found that a

typical optimal trajectory will sequentially climb on two operational constraints

q = _pV 2 = qm_=
Z

(36)

(_ = I( v/'P V 3 = (_,,a, (37)

The first one is a dynamic pressure constraint and the second a convective heating rate

constraint. In conformity with Eq. (29), the two constraints can be rewritten as, respec-

tively,

(3s)

(39)

8



where

G =  /2qma /Po9o o, Co = (Om. /K9o o ) 1/3 (40)

A generic aerospace plane model 7 is used. The thrust of the airbreathing propulsion

system is modeled by

T = CTq (41)

where the thrust coefficient CT iS a function of dynamic pressure, Mach number and the

throttle, controlled by the fuel equivalence ratio. Hence the model satisfies Assumption

(i). For the best fuel efficiency the equivalence ratio is set at unity. Assumption (v) has

been verified 6.

A typical optimal ascent trajectory for the aerospace plane is shown in Fig. 1. After a

quick initial climb-out, the trajectory enters the q-constraint boundary and rides on it until

the Q-constraint becomes active. After flying on the Q-constraint awhile the aerospace

plane finally pulls up at an appropriate point and ascends to orbit. When the aerospace

plane is flying on the constraint (36), the complete trajectory is characterized by

e2P_ + Q (42)
v -- e2Pr _ Q

c2pr + Q

21n(C ; --Q)) (43)

- e2P" - O 2 1) (44)
_ = 2P(( e--_-_-7+ _) -

e 2pr _ Q

8=Oo+Pln( F- 0- )-r (45)

The approximation of (27) has been used in the above equations. Similar formulas with

p = 1/6 in Eqs. (31) and (32) describe the motion analytically after the aerospace plane

leaves the constraint (36) and enters the constraint (37). When qmaz = 95,(;60 N/m 2

(2,000 psf) and 0rna_ = 800 W/cm 2, we choose/5 = 0.9 and/5 = 1.2 for the q-constraint

and Q-constraint respectively, based on the results in Ref. 6_ Figures 2 and 3 compare the

the analytic solutions with the numerical solutions obtained in Ref. 6. We see that both

the altitude and flight path angle histories match quite well.



The trajectory optimization for the aerospaceplane stands as a very challenging prob-

lem because of the highly data-driven model and stringent flight path constraints. Since the

dominant portion of the optimal ascent trajectory is on the constraints (36) and (37) 3-s,

formulas (42)-(45) and their counterparts for the constraint (37) provide a simple yet ac-

curate representation of 60%- 80% of the trajectory. The trajectory optimization problem

can be considerably simplified by only numerically investigating the rest of the trajectory.

It is also worth pointing out that Eq. (32) indicates a nonzero flight path angle along

the constraints (36) and (37). Applications of the standard energy state approximation

and zeroth order time-scale decomposition technique to the unconstrained trajectory lead

to the reduced solution -y = 03'5. The presence of the two constraints obviously has altered

the structure of the reduced solution, as suggested by Moerder et al s from a different

perspective. Equations (18) and (19) imply that on the constraint boundary only the

flight path angle dynamics should be considered "fast" instead of both altitude and flight

path angle dynamics being considered "fast". This phenomenon is more evident in the

next problem.

3.2 Hypersonic Cruise

During the early flight tests of the aerospace plane and some other conceivable mis-

sions, a considerable portion of the trajectory will be hypersonic cruise inside the atmosphere s.

A natural design of the cruising trajectory is a nearly horizontal path with lift-to-drag ra-

tio nearly maximized. To this end, we would want the cruising trajectory to follow a

constraint

v 2 1
C(v,p,h) - po,'oSC_ PV 2 + ( ) = 0 (46)

2too ] + h (1 + h)2

where S is the reference area of the vehicle and C_ the lift coefficient corresponding to _*,

the angle of attack at which the lift-to-drag ratio L/D is maximized. Constraint (46) is

the result of letting "_ = 0 and L = L* in the right hand side of the 7t equation (5) and

setting "),_to zero. It should be noted that during the flight the actual "),wilt not be exactly

zero since the velocity is varying thus _ will be slightly different from _*. However, the

10



flight path angle3' will be near zeroand a will be near a* if (46) is followed. Solving v in

terms of p and h produces

_/ 1 (47)v = (1 + h)(1 + a(1 + h)>)

with the constant G being defined as

a- poroSC_ (48)
2rno

Because of the constraint, 7 is expected to be small, and so is h. Therefore,

_/ 1 (49)v = f(fi)= 1 + Gfi

We first investigate the trajectory numerically. To fly the vehicle, the throttle setting

is fixed at a constant by specifying a fuel equivalence ratio. The aerodynamic control, a,

required to follow the constraint (47) is obtained by solving the equation C _ = 0. Then

the a is used in Eqs.(4) and (5) to generate the actual flight trajectory. For computation,

we have chosen the following data:

equivalence ratio = 0.5, initial altitude = 40 km, mo= 100,000 kg, % = 0

The initial Mach number is 14.63 determined by (47). Figure 4 shows the variations of 3`

and a for the first 10 seconds of the flight obtained through numerical integration. Both

histories exhibit an unmistakable transient period of 3-4 seconds. After this period 7 and

a settle down in a steady state with a approaching a* which is 3.93 ° for our case. This

asymptotic (as t _ oe) behavior is found to be present regardless of the starting altitude

and throttle setting, which renders strong support to the theory developed in Section 2.2,

Eq. (19) in particular. Then we turn to the analytical asymptotic solution of the trajectory

which is given by Eqs. (35) and (36) with A = 1, B = G, n = -1/2 and rn = 1:

e2z(r) _ Q_, = 2P( e2 4,.) + )2 (50)

= In(G(e24") + Q)2
_4Qe2z(_) ) (51)

11



The function z(r) can be calculated as follows. Since a _ a* except for the short initial

L )too.

T CT

SCb

period,

(52)

(53)

CT is treated as a constant for the given equivalence ratio and the range of altitude and

Mach number variations. Then,

_-1
P- = constant, z(r) = Pr (54)

r/

The complete trajectory is designed in the following way: The climbing trajectory

from takeoff to the beginning of the cruise is numerically found by the inverse dynamics

technique presented in Ref. 6. This results in a fuel-optimal trajectory subject to inequality

constraints q < q,-na_ and Q _< t_,,a_, equality constraints h I = 40 kin, 7I = 0° and

v I =Mach 14.63. The cruising trajectory then is analytically modeled by Eqs. (24), (50)

and (51). Figures 5 demonstrates the complete trajectory. The asymptotic solution shows

an excellent agreement with the cruising trajectory obtained by numerical integration.

Figure 6 compares the asymptotic and numerical solutions for 7 along the cruising part of

the trajectory. Except for the a few initial seconds, the asymptotic solution again is very

close the the true solution. The Mach number increases from 14.63 to 15.29 at the end

of the ten-minute cruise. It should be noted that the choice of the cruising altitude and

throttle setting only influences the magnitudes of the h, v and 7. The characteristics of

the trajectory remain the same.

Conclusions

The flight trajectory of aerospace vehicles subject to a class of path constraints has

been studied. The analysis reveals that under some fairly general conditions the altitude

dynamics and flight path angle dynamics constitute a natural two-time-scale system: the

flight path angle dynamics is fast and the altitude dynamics slow. The approximate asymp-

totic solution for the flight path angle is given as a function of the altitude from which the

velocity can be expressed as an explicit function of time, regardless of the specific forms of

the constraints. If the altitude can be solved in terms of the velocity from the constraint,

12



both the altitude and the flight path anglehaveanalytical expressionsasfunctions of time.

Applications in trajectory analysis for an aerospaceplane arepresented. The challenging

problem of ascenttrajectory optimization for the aerospaceplane can be significantly sim-

plified by using theseanalytical formulas. The techniqueis alsousedto designa hypersonic

cruising trajectory for the aerospaceplane. The results strongly support the theory and

the analytical solutions are in excellentagreementwith the numerical results.
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